All Issue

2024 Vol.34, Issue 1 Preview Page

Research Article

31 March 2024. pp. 51-65
Abstract
References
1
Appiahene, P., Missah, Y.M., Najim, U., 2020, Predicting bank operational efficiency using machine learning algorithm: Comparative study of decision tree, random forest, and neural networks, Advances in Fuzzy Systems, 2020, 8581202. 10.1155/2020/8581202
2
Breiman, L., 2001, Random forests, Machine Learning, 45(1), 5-32. 10.1023/A:1010933404324
3
Cellek, S., 2021, The effect of aspect on landslide and its relationship with other parameters, Landslides, IntechOpen, 13-29. 10.5772/intechopen.99389PMC9744312
4
Chae, B.G., Kim, W.Y., Jo, Y.C., Kim, K.S., Lee, C.O., Song, Y.S., 2006, Field investigation and prediction techniques of landslides, Proceedings of the Korean Society of Geological Engineering Symposium: Landslides and Disaster Prevention Measurement, Seoul, 149-184.
5
Choi, D.Y., Baek, J.C., 2012, Characteristics of runout distance of debris flows in Korea, Journal of the Korean Society of Civil Engineers, 32(3B), 193-201 (in Korean with English abstract). 10.12652/Ksce.2012.32.3B.193
6
Du, G.L., Zhang, Y.S., Iqbal, J., Yang, Z.H., Yao, X., 2017, Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China, Journal of Mountain Science, 14(2), 249-268. 10.1007/s11629-016-4126-9
7
Eu, S., Im, S.J., 2017, Examining velocity estimation equations of debris flow using small-scaled flume experiments, Journal of Korean Forest Society, 106(4), 424-430 (in Korean with English abstract). 10.14578/jkfs.2017.106.4.424
8
Fadhillah, M.F., Hakim, W.L., Panahi, M., Rezaie, F., Lee, C.W., Lee, S., 2022, Mapping of landslide potential in Pyeongchang-gun, South Korea, using machine learning meta-based optimization algorithms, Egyptian Journal of Remote Sensing and Space Science, 25(2), 463-472. 10.1016/j.ejrs.2022.03.008
9
Frattini, P., Crosta, G., Carrara, A., 2010, Techniques for evaluating the performance of landslide susceptibility models, Engineering Geology, 111(1), 62-72. 10.1016/j.enggeo.2009.12.004
10
Gaidzik, K., Ramírez-Herrera, M.T., 2021, The importance of input data on landslide susceptibility mapping, Scientific Reports, 11(1), 19334. 10.1038/s41598-021-98830-y34588548PMC8481530
11
Goetz, J.N., Brenning, A., Petschko, H., Leopold, P., 2015, Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling, Computers & Geosciences, 81, 1-11. 10.1016/j.cageo.2015.04.007
12
Guo, Z., Shi, Y., Huang, F., Fan, X., Huang, J., 2021, Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management, Geoscience Frontiers, 12(6), 101249. 10.1016/j.gsf.2021.101249
13
Hong, H., Pradhan, B., Xu, C., Tien Bui, D., 2015, Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines, Catena, 133, 266-281. 10.1016/j.catena.2015.05.019
14
Iverson, R.M., Logan, M., LaHusen, R.G., Berti, M., 2010, The perfect debris flow? Aggregated results from 28 large-scale experiments, Journal of Geophysical Research, 115, F03005. 10.1029/2009JF001514
15
Jeong, C.H., Park, Y.A., Kim, H.M., 1977, Geological report of Eumseong sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211022.4507.
16
Ji, J.M., Yoon, S., Lee, C.J., 1989, Geological report of Munmak sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211221.4679.
17
Kim, G.W., Lee, H.G., 1965, Geological report of Chungju sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211022.4505.
18
Kim, G.W., Park, B.S., Lee, H.G., 1967a, Geological report of Jecheon sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211203.4611.
19
Kim, K.S., 2008, Characteristics of basin topography and rainfall triggering debris flow, Journal of the Korean Society of Civil Engineers, 28(5C), 263-271 (in Korean with English abstract). 10.12652/Ksce.2008.28.5C.263
20
Kim, N.J., Choi, S.O., Kang, P.J., 1967b, Geological report of Mungyeong sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211214.4646.
21
KMA (Korea Meteorological Administration), 2020, Landslide damage status of Chungju city, Chungcheongbuk-do, 2020, Retrieved from https://www.data.go.kr/data/15102424/fileData.do.
22
KFS (Korea Forest Service), 2021, 2020 Forest disaster white paper, 94p.
23
Lee, J.H., 2022, Landslide susceptibility assessment using coupled initiation and runout prediction model, Doctoral Dissertation, Sejong University Graduate School, 2-4 (in Korean with English abstract).
24
Lee, J.H., Kim, J.H., 1972, Geological report of Goesan sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211214.4653.
25
Lee, M.S., Park, B.S., 1965, Geological report of Hwanggang-ri sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211110.4596.
26
Lee, S., Kim, M., 2020, Construction of topographic/hydrologic data using DEM and its service, GEO DATA, 2(2), 36-44 (in Korean with English abstract). 10.22761/DJ2020.2.2.006
27
Lee, S., Talib, J.A., 2005, Probabilistic landslide susceptibility and factor effect analysis, Environmental Geology, 47(7), 982-990. 10.1007/s00254-005-1228-z
28
Lombardo, L., Mai, P.M., 2018, Presenting logistic regression-based landslide susceptibility results, Engineering Geology, 244, 14-24. 10.1016/j.enggeo.2018.07.019
29
Merghadi, A., Yunus, A.P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D.T., Avtar, R., Abderrahmane, B., 2020, Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance, Earth-Science Reviews, 207, 103225. 10.1016/j.earscirev.2020.103225
30
Park, B.S., Yeo, S.C., 1971, Geological report of Mokgye sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211203.4618.
31
Park, H.J., Lee, J.H., 2022, A review of quantitative landslide susceptibility analysis methods using physically based modelling, The Journal of Engineering Geology, 32(1), 27-40 (in Korean with English abstract). 10.9720/kseg.2022.1.027
32
Pham, B.T., Pradhan, B., Tien Bui, D., Prakash, I., Dholakia, M.B., 2016, A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India), Environmental Modelling & Software, 84, 240-250. 10.1016/j.envsoft.2016.07.005
33
Pham, B.T., Prakash, I., Khosravi, K., Chapi, K., Trinh, P.T., Ngo, T.Q., Hosseini, S.V., Bui, D.T., 2019, A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling, Geocarto International, 34(13), 1385-1407. 10.1080/10106049.2018.1489422
34
Pradhan, B., 2013, A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Computers & Geosciences, 51, 350-365. 10.1016/j.cageo.2012.08.023
35
Regmi, A.D., Yoshida, K., Nagata, H., Pradhan, A.M.S., Pradhan, B., Pourghasemi, H.R., 2013, The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya, Natural Hazards, 66(2), 501-532. 10.1007/s11069-012-0497-6
36
Roth, R.A., 1983, Factors affecting landslide-susceptibility in San Mateo County, California, Environmental & Engineering Geoscience, xx(4), 353-372. 10.2113/gseegeosci.xx.4.353
37
Shahabi, H., Hashim, M., 2015, Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment, Scientific Reports, 5, 9899. 10.1038/srep0989925898919PMC4405769
38
Shin, W.J., Hong, S.C., Kim, J.Y., 2022, A study on the factors affecting debris disasters in Chungbuk province, Journal of the Association of Korean Geographers, 11(1), 105-120 (in Korean with English abstract). 10.25202/JAKG.11.1.7
39
Song, Y.S., Lee, M.S., 2023, A random walk model for estimating debris flow damage range, The Journal of Engineering Geology, 33(1), 201-211 (in Korean with English abstract). 10.9720/kseg.2023.1.201
40
Van Westen, C.J., Seijmonsbergen, A.C., Mantovani, F., 1999, Comparing landslide hazard maps, Natural Hazards, 20(2), 137-158. 10.1023/A:1008036810401
41
Wu, Y., Ke, Y., Chen, Z., Liang, S., Zhao, H., Hong, H., 2020, Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping, Catena, 187, 104396. 10.1016/j.catena.2019.104396
42
Yang, I.T., Park, J.K., Park, K., 2014, An evaluation of damage scale on the local governments in Gangwon-do using landslide risk maps, Journal of the Korean Society for Geospatial Information Science, 22(4), 71-80 (in Korean with English abstract). 10.7319/kogsis.2014.22.4.071
43
Yeo, S.C., Lee, I.G., 1975, Geological report of Yeoju sheet (1:50,000), Geological Survey of Korea, https://doi.org/10.22747/data.20211104.4577.
44
Yesilnacar, E., Topal, T., 2005, Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Engineering Geology, 79(3-4), 251-266. 10.1016/j.enggeo.2005.02.002
Information
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 34
  • No :1
  • Pages :51-65
  • Received Date : 2024-01-03
  • Revised Date : 2024-03-07
  • Accepted Date : 2024-03-11