All Issue

2020 Vol.30, Issue 3 Preview Page

Research Article


September 2020. pp. 315-325
Abstract


References
1 

Byun, L.S., Moon, H.K., 2010, The prediction of rock slope stability in Korea using artificial neural network, The Korean Society of Mineral and Energy Resources Engineers, 47(1), 31-44 (in Korean with English abstract).

2 

Chae, B.G., Kim, W.Y., Cho, Y.C., Kim, K.S., Lee, C.O., Choi, Y.S., 2004, Development of a logistic regression model for probabilistic prediction of debris flow, The Journal of Engineering Geology, 14(2), 211-222 (in Korean with English abstract).

3 

Dai, Z., Huang, Y., Cheng, H., Xu, Q., 2014, 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake, Engineering Geology, 180, 21-33.

10.1016/j.enggeo.2014.03.018
4 

Di, B., Zhang, H., Liu, Y., Chen, N., Stamatopoulos, C., Luo, Y., Zhan, Y., 2019, Assessing susceptibility of debris flow in southwest China using gradient boosting machine, Scientific Reports, Published Online.

10.1038/s41598-019-48986-531467342PMC6715629
5 

Galelli, S., Castelletti, A., 2013, Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling, Hydrology and Earth System Sciences, 17(7), 2669-2684.

10.5194/hess-17-2669-2013
6 

Geurts, P., Ernst, D., Wehenkel, L., 2006, Extremely randomized trees, Machine Learning, 63(1), 3-42.

10.1007/s10994-006-6226-1
7 

Hong, W.P., Kim, W.Y., Song, Y.S., Lim, S.G., 2004, Prediction of landslide using artificial neural network model, Journal of the Korean Geotechnical Society, 29(8), 67-75 (in Korean with English abstract).

8 

Kim, J.C., Lee, S.M., Jung, H.S., Lee, S.R., 2017, Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea, Geocarto International, Published Online, 1000-1015.

10.1080/10106049.2017.1323964
9 

Merghadi, A., Yunus, A., Dou, J., Whiteley, J., ThaiPham, B., Bui, D.T., Avtar, R., Abderrahmane, B., 2020, Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performancem, Earth-Science Reviews, 207.

10.1016/j.earscirev.2020.103225
10 

Nagarajah, T., Poravi, G., 2019, A review on automated machine learning (AutoML) systems, Proceedings of the 2019 5th International Conference for Convergence in Technology (I2CT), 1-6.

10.1109/I2CT45611.2019.9033810
11 

Nam, K.H., Wang, F.W., 2019, The performance of using an autoencoder for prediction and susceptibility assessment of landslides: a case study on landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake in Japan, Geoenvironmental Disasters, 6(19), 1-14.

10.1186/s40677-019-0137-5
12 

Park, S.Y., Kim, J.S., 2019, Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance, Applied Sciences, Published Online, 1-19.

10.3390/app9050942
13 

Sassa, K., Nagai, O., Solidum, R., Yamazaki, Y., Ohta, H., 2010, An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide, Landslides, 7, 219-236.

10.1007/s10346-010-0230-z
14 

Xia, B., Zhang, H., Li, Q., Li, T., 2015, PETs: A stable and accurate predictor of protein-protein interacting sites based on extremely-randomized trees, IEEE Transactions on Nanobioscience, 14(8), 882-893.

10.1109/TNB.2015.249130326529772
Information
  • Publisher :Korean Society of Engineering Geology
  • Publisher(Ko) :대한지질공학회
  • Journal Title :The Journal of Engineering Geology
  • Journal Title(Ko) :지질공학
  • Volume : 30
  • No :3
  • Pages :315-325
  • Received Date :2020. 08. 26
  • Revised Date :2020. 09. 17
  • Accepted Date : 2020. 09. 21